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Introduction
The Container-Based Architecture for Simulation (CBA) is a family of object-oriented software 
frameworks that together implement ZedaSoft's simulation system design "A Container-based
Architecture for Simulation of Entities in a Time Domain" (U.S. patent 7,516,052). 

CBA is a general system for managing the update of arbitrary data over time. It makes no 
assumptions about the data being managed; instead, it provides an object assembly model, 
execution life-cycle management, network distribution and other general services that can be 
used to model specific problem domains in a flexible way.

CBA's object assembly model and execution life-cycle management strategy is called Fractal 
Containment®.

Early versions of CBA were based on a container model that was enforced formally only at 
the topmost domain object level.  This approach was successful, but while using it on a daily 
basis we learned that the object assembly and life-cycle API calls were often needed by 
lower-level objects too.  Over time it became clear that the container model should be 
generalized and applied in a consistent way at most levels in the object graph.

Why “Fractal”?

In mathematics a fractal is defined as “a geometric pattern that is repeated at every scale”.  
We chose this term because CBA's object assembly model is recursive, and its general 
structure and execution are identical at every level.

Motivations

Fractal Containment® is based on the observation that nearly everything in traditional object-
oriented programming is a container of one kind or another.  Most classes include some set of
internal fields, each of which in turn may be instances of other classes that define other sets 
of internal fields, and so on to some arbitrary level of complexity.  Instances of such classes 
can be woven into a tree of objects within the limits of assembly rules hard-coded in the 
various classes.  Such a tree of objects is called an object graph.  Object graphs are the 
software representation of some real-world problem that we want to model in the computer.

In traditional object-oriented programming the assembly and execution of object graphs is 
based on code that weaves components together in a rigid way based on a static model.  
Sometimes this is what you want, but in environments where flexibility is a primary concern 
this approach is less desirable because software developer intervention is required to extend, 
delete, replace, or rearrange the object graph's components.  In addition, object graphs are 
typically closed once built: they can only be modified at runtime within hard-coded constraints,
their structure can't be examined, and arbitrary locations in the graph can't be interrogated for 
data.

What if we could generalize the container model and allow object graphs to be assembled 
declaratively outside of code?  Potential benefits include:

• Software components would follow common patterns for discovery of surroundings, 

1



Fractal Containment® Technical Brief
08/18/2011

execution, and object graph assembly, making it simpler for any development team 
member to contribute components to any point in the graph.

• The software component assembly model would better follow the analogous assembly 
of components in the problem domain.  The code components would define the 
possible parts that could be assembled, and the declarative assembly would say how 
to weave them together into a functional unit.

• Assembly could be pushed downstream into the hands of the end-users so the object 
graph could be easily customized to meet the end-users' requirements.  New 
components could be added, or existing components could be deleted, replaced, or 
rearranged, without requiring modification and rebuilding of code.

• Object graph modifications could take place at runtime as well as at assembly time 
with fewer constraints on where and when components execute.

• Components could be easily inserted into any container that could provide a sufficient 
execution context, providing the foundation for “what-if” container assemblies.

• A consistent execution life-cycle could be enforced across the entire object graph.

• Object graph structure could be interrogated and described to other applications that 
may want to display the structure graphically to an end user.

• Arbitrary data could be extracted from any component in the object graph to support 
data recording or graphing.

The Formal Fractal Containment® Model

Fractal Containment® is a formalization of the general container model discussed in the 
previous section, and is based on the following simple concepts:

• Contained objects are named and uniquely identifiable.  These names are the 
equivalent of hard-coded field names in the traditional class/field model, and can be 
concatenated together to define a path to a specific object anywhere in a container 
object graph.

• Contained objects implement a formal life-cycle.  The life-cycle defines a formal 
interface that lets contained objects identify themselves, allows their enclosing 
container to let them know when there are structural changes in the container 
(including their own addition and removal), and allows their enclosing container to 
manage their routine execution.

• Contained objects discover their surroundings at runtime.  This means we are free to 
place a specific object anywhere under a container that can provide a proper execution
context.

• Contained objects run in a sandbox that protects all objects from the potential 
misbehavior of any object in the graph.  This makes object graph assembly and 
execution more robust.  If an object does something undesirable, then it is discarded, a
message is logged, and the rest of the graph continues normally.
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• A container contains zero or more contained objects, and a container can be a 
contained object in some other container.  This is what puts the “Fractal” in Fractal 
Containment®: any contained object may in turn be another container, and if you look 
inside you see the same pattern again.

We can now start to form a picture of what a fractal object graph might look like in a general 
case:

Container “root”
    Container “1.1”
        Container “2.1”
        Container “2.2”
        Container “2.3”
            ContainedObject “3.1”
            ContainedObject “3.2”
            ...more...
        ...more...
    Container “1.2”
        ContainedObject “2.1”
        ...more...
    Container “1.3”
        ContainedObject “2.1”
        ContainedObject “2.2”
        ...more...
    ...more...

This looks at lot like a table of contents for a text document, and the analogy is applicable.  
Under Fractal Containment® you can move an object around in the object graph just as easily 
as you can grab a block of text in a text document and drop it into a different section.  
Similarly, you can define an arbitrary hierarchy of objects just as easily as you can define the 
section arrangement in a text document.

In this illustration the Containers and ContainedObjects at the various levels represent 
arbitrary code sequences that perform state data maintenance operations.  CBA doesn't care 
what the state data represents, and doesn't care what the operations are as long as they are 
well-behaved.
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Application Within CBA

Within CBA Fractal Containment® allows any set of objects that implement the execution life-
cycle to be assembled into an object graph based on either an XML description or an 
assembly defined in code.  For each container the general process is as follows, regardless of
the container's ultimate level within the object graph:

Interfaces – define the types of components in the system and the methods that must be 
implemented by each type.  Put another way, interfaces define the contract between types 
without defining how the  contract is implemented.  A particular set of interfaces defines a 
“domain model”.

Implementations – provide concrete implementations of a set of a domain model interfaces.  
For each interface there can be one or more implementations.  Properly developed 
implementations fulfill the contract of their corresponding interface and can be interchanged 
freely depending on the user's needs.  Reasons you might need multiple implementations of a
given interface include varying levels of fidelity, accommodating export restrictions, changing 
classification levels, or general experimentation.

Assembly – provides runtime assembly of specific implementations into a functioning object 
graph.  Any combination of accessible domain model interface implementations can be used 
as long as they realize the contract defined by the domain model interfaces.  Assembly can 
take place either in code, or declaratively through XML.  CBA's XML-based assembly 
mechanism is called BeanMachine.  BeanMachine consumes an XML file that specifies which
implementations to use, what their initial property values should be, and how they should be 
connected.  BeanMachine creates the specified objects, initializes them, then weaves them 
together into a functional object graph.

Life-Cycle – a formal interface that allows objects to participate in the object graph assembly 
step and regulates their routine execution.  An important feature introduced by the Life-Cycle 
is a formal initialization phase in between object creation and routine execution.  During this 
initialization phase the objects' property values are initialized, and they're given an opportunity
to discover their surroundings in the graph.
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Practical Examples

Simulation

Suppose we developed a set of components to support an aircraft simulator.  The top-level 
container may contain an aircraft and some SAM sites to act as targets.  This was as far as 
the formal container model was taken in early versions of CBA:

Fractal Containment® made the container model pervasive.  Now the aircraft and SAM sites 
can each be formal containers with immediate contained objects to represent internal 
subsystems:
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RunnableContainer “root”

TestFighter “aircraft”

SamSite “samSite1”

SamSite “samSite2”
...

RunnableContainer “root”

TestFighter “aircraft”

SamSite “samSite2”

SamRadar “radar”

SamLauncher “launcher”

MotionModel “motionModel”

FireControl “fireControl”

Stores “stores”

...
...

Radar “radar”

SamSite “samSite1”

SamRadar “radar”

SamLauncher “launcher”
...

...
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The pattern may continue with some of the subsystems implemented as formal containers.  In
this example we have expanded the aircraft radar, and added the assembly mechanisms to 
the illustration:

Hierarchical object graph structures like these are easily described in XML as assembly 
instructions for BeanMachine.  The graph can use any accessible interface and 
implementation classes that implement the life-cycle interface, and arrange them however is 
required as long as the arrangement provides a sufficient execution context for each object.  
The graph has no inherent complexity limit; it can be as wide and deep as necessary.
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When implemented with a language that supports a public runtime system with field-level 
access, Fractal Containment® will also allow you to easily interrogate ad-hoc data anywhere 
in the object graph by evaluating a symbolic path against the root container.  The symbolic 
path locates an object by specifying every object name between the root and the final object 
of interest.

For example, suppose the radar's antenna includes a simple data property named 
“degAzimuth”.  This item can be identified and extracted by evaluating the path 
“aircraft.radar.antenna.degAzimuth” against the root container.

If you are experienced with object-oriented development techniques you may be wondering at
this point why this is a different approach.  Why not just declare some static hierarchy of 
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objects and assemble them in code?  You could, but you don't get dynamic assembly that 
way.  You could fix that problem by making some or all of your static model pluggable, but you
still don't have the flexibility to move objects around in the graph easily.  You could further  
generalize your model, but at that point you have Fractal Containment®.

Fractal Containment® allows you to interrogate the graph structure in a language-neutral way. 
Languages with respectable public runtime systems would support this without Fractal 
Containment®, but languages like C++ would not.  Fractal Containment® gives you all these 
things at once, and could be implemented in a variety of computer languages.

The important point to have absorbed by now is that Fractal Containment® provides a public 
structure that is extensible, open-ended, and can be interrogated.  Furthermore the assembly 
of the object graph is declarative, assembled at runtime, and can make use of any 
appropriate available components including ones you've written yourself.

Changing Simulator Classification Levels

In high-fidelity military simulation it is common to need at least some components whose code
and/or data are classified.  A common and unfortunate side effect of this in typical monolithic 
software systems is that the entire code base can be tainted by the presence of a handful of 
classified components.  This usually leads to a split in the source code so it can enter the 
closed area, making it difficult to coordinate modifications to components in the unclassified 
parts of the system.  The typical result is that the code base inside the closed area deviates 
from the point of the split, resulting in revision control difficulties.

A better solution would be to make it easy to run the unclassified system outside the closed 
area so the core system can be maintained from a common code line, then bring releases of 
the unclassified system into the closed area when necessary and replace selected 
unclassified components with their classified counterparts.  The only components whose 
development would need to be confined to the closed area would be the classified 
components proper.

Fractal Containment® provides this capability at whatever level of granularity is required, in a 
more flexible way than is possible with traditional development approaches.  The classified 
components could be any combination of entire platforms, platform subsystems, or even sub-
components of subsystems.

It's important to note that because the assembly is brought together declaratively at runtime 
the choice of which components to use is per-container.  This means any combination of 
components can be used per-subsystem, per-entity, per-scenario.

In the example that follows we maintain a runnable, unclassified system in the white world, 
and deploy the entire system into the closed area when new features are available.  A 
classified aircraft radar and SAM site model is maintained in the closed area.  The XML 
container descriptions in the closed area can choose either the unclassified or classified 
implementations, which are assumed to implement the same interfaces and therefore can be 
exchanged freely.
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Accommodating Export Restrictions

One creative potential use of Fractal Containment® is to drive deployments using a database 
that tracks software pedigree and customer entitlements.

For example, suppose you have a simulator that supports a certain set of capabilities that can
be deployed anywhere in the U.S., but some components of the system cannot be taken to 
certain countries.  The common approach to preparing the software set for overseas use is to 
have software developers remove the non-compliant components and splice in suitable 
substitutes where necessary.  This typically is a time-consuming manual task that also risks 
the accidental inclusion of software that cannot go outside the country.

A system that could quickly assemble an export-approved software set would save labor and 
time, and reduce the risk of mistakes since the process is repeatable and only relies on the 
occasional maintenance of the data that describes the software pedigree and customer 
entitlements.

In this example a database-driven assembly process decides which implementations to use 
based on what a particular customer is allowed to receive.  The implementations in this 
example are assumed to implement common interfaces and therefore be interchangeable.  
Furthermore we assume the domestic-use and export-approved classes use identical class 
names, which means that all the process needs to do is choose which components to deploy 
and the runtime assembly process doesn't know the difference.
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Supporting End-To-End Software Flow

A holy grail of software systems used on military platforms is the ability to develop OFP 
software in the simulator and have it flow all the way down to the LRU on the physical 
platform.  Setting aside for a moment all the non-technical issues that might stop this from 
working, Fractal Containment® would provide a viable technical solution for this problem 
because a properly developed component could be run in any container that could provide a 
comprehensive execution context.

In this example a Fractal Containment® runtime is available in a simulator and an LRU.  In 
practice a Systems Integration Lab would also be involved, and would use a combination of 
these runtimes.  Each of these would host a container somewhere in the hierarchy such that a
proper execution environment for a hypothetical Mission Computer could be established.  
Provided the execution environments are comprehensive the same Mission Computer could 
be plugged into each of the environments without modification.  The inclusion of the OFP 
code in the simulator is specified declaratively and assembled at runtime, per entity, per 
scenario.  Some entities may choose to use the OFP, while others may not.  The LRU would 
always perform a repeatable load of the OFP.
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Summary

CBA's Fractal Containment® is a regular object assembly and execution life-cycle model that 
allows properly constructed objects to be assembled in a flexible declarative way.  Object 
implementation is separated from the assembly through well-defined interfaces, allowing 
different implementations of a given interface to be exchanged freely to support security 
concerns, export restrictions, general experimentation, or other activities that require a flexible
infrastructure.  Components can be specified per-subsystem, per-entity, per-scenario, and 
potentially to even finer levels depending on the degree to which Fractal Containment® has 
been used.

Fractal Containment® is currently in use in military and civilian simulators supported by 
ZedaSoft, and has demonstrated all benefits envisioned during initial capabilities and design 
discussions.
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